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B C H Krutzen and F Springelkamp 
Institute for Theoretical Physics, Faculty of Science, University of Nijmegen, Toernooiveld, 
6525 E D  Nijmegen, The Netherlands 

Received 23 March 1989, in final form 8 June 1989 

Abstract. A fully relativistic first-principles electronic structure calculation method is 
presented for magnetic materials. The method is based on the local spin moment density 
concept for relativistic Hamiltonians. In order to obtain manageable Kohn-Sham-Dirac 
equations including magnetic fields, the orbital contribution to the four-current density is 
omitted. The starting point is Takeda’s relativistic generalisation of the augmented spherical 
wave method for non-magnetic crystals (RASW). In its basic form, the proposed method for 
magnetic crystals is only slightly more involved as RASW, and still takes all relativistic and 
spin polarisation effects into account, from first principles (including the AI = 2 coupling). 
The treatment of relativistic and spin polarisation effects can be called ‘on equal footing’. In 
both relevant limits the method is exact (within the mentioned framework). Furthermore, 
a more elaborate scheme is suggested, which is a systematic improvement of the basic 
scheme. A comparison is made with other recently published methods. Finally, results of 
self-consistent calculations for ferromagnetic Ni and Gd, performed with the basic scheme, 
are compared with previous calculations and experimental data from the literature. For 
Ni, the results are in good agreement both with previous calculations and with experiment. 
For Gd interesting new results have been obtained concerning the spectroscopic splitting 
factor g. The influence of the choice for an explicit exchange and correlation functional is 
studied as well as the influence of the coupling between I and I + 2 levels. 

1. Introduction 

Considerable progress has recently been made in developing tools for the calculation 
of the electronic structure of crystalline solids in which both magnetic and relativistic 
effects play an important role. The interplay of these effects is responsible for a number 
of interesting physical properties such as magnetic anisotropy, but the mere coexistence 
of both effects already presents a challenge to electronic structure calculations. 

First of all there is the need of a four-current version of local density functional 
theory (DFT). Furthermore, it is still an open question whether such a DFT can give 
reliable groundstate properties for systems that often contain very localised electrons. 
Up to now there is only one manageable four-current DFT. It omits orbital contributions 
to the four-current and is equivalent to local spin density (LSD) theory in the non- 
relativistic limit. This DFT leads to Kohn-Sham-Dirac equations including magnetic 
fields. In a spherically symmetric potential all the resulting radial equations for different 
orbital momentum number 1 are coupled through two semi-infinite series of odd and 
even 1. 

Recently a number of ways have been proposed to deal with these radial equations. 
The goal of this paper is to make a contribution to this final step by the presentation 
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(in $83 and 4) of two calculation schemes based on the existing relativistic augmented 
spherical wave (RASW) method, which is explained in $2. The scheme of $3 has actually 
been implemented on a computer and applied to the elemental ferromagnets nickel 
and gadolinium. The results can be found in $5 and conclusions are drawn in $6. 

2. The RASW method 

The RASW method of Takeda [l]  can be seen as a natural extension for relativistic 
electrons of the ASW method introduced by Williams et a1 [ 2 ] .  Since we would like to 
discuss newly developed spin-polarised versions in $53 and 4, we reformulate the basic 
ideas of RASW. 

In the RASW method the potential is approximated as in ASW, where the crystal is 
divided into spheres centered at atomic positions and the remaining interstitial space. 
Inside the spheres the potential is spherically averaged, while it  is taken as constant 
(VMT) and equal to the (weighted) average of the potential at the sphere boundaries 
in the interstitial space. Depending on the choice of the sphere radii, this is called 
the muffin-tin approximation (MTA) or the atomic sphere approximation (ASA). The 
RASW basis functions are given by an analytical prescription in the interstitial region. 
For spherical symmetrical potentials V(r) the solutions to the Dirac equation can be 
written as 

where the radial functions g,(r) and f,(r) obey the radial equations [3] : 

dg, ti 
- + - g, = [ 2 / ~  + % ( E  - V ) ] f ,  
dr r 

df, ti 
~ - - f, = r ( V  - E)g,. 
dr r 

The Pauli spinors xf are eigenstates of (1 + CJ . L )  and J ,  = L; + S,  with eigenvalues 
-ti and p respectively. The equations are given in atornic units with e = A = me = 1 
and c = 1 / r ,  where r 1. (1 37)-' is the fine structure constant. 

In the interstitial region, where V is constant, the large component g ,  satisfies the 
Helmholtz equation 

d2g, ti(ti + 1) 
~ - -~ g, = - x e ( 2 / r  + xe)g, 
dr2 rz 

where we have defined E E - VMT. As in the ASW, we choose outgoing Hankel 
functions, / zT(r ) ,  for g,(r)/r. (The hr(r)  are related to the Hankel functions Hi') in [4] 
by hT(r) = (ikc)'+'H,(+)(ikCr).) 

Since  ti(^+ 1) = 1(1+ 1)  both for ti = 1 and ti = -1.- 1 it is natural to take g, = g-,-l 
for the interstitial region, indicating the absence of spin-orbit splitting for constant 
potential. Therefare we define 
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The Hankel function hT(r) satisfies for some k,  < 0 

- ($ - -) rh:(r) = --k: rhT(r). 

The kinetic energy parameter k ,  is fixed at some small negative value and not used as 
a variational parameter. Therefore, the k, is suppressed notationally. The small radial 
component f , ( r )  is found from (4) and ( 2 )  and is different for K = 1 and K = -I - 1. 
This difference is not important because (especially for the ASA) the contribution of 
the small components to the interstitial charge is very small and can be neglected. The 
energy E of the interstitial RASW functions can be found from (3) and ( 5 )  to satisfy 

Inside the spheres the interstitial prescription is augmented by a numerical solution 
of the radial equa-tions ( 2 )  for an energy such that both g, and f ,  (thus w,") are 
continuous at r = R,  the sphere radius, in order to have a Hermitian variational 
problem. The boundary conditions become 

g,(X) = Rh:(R) 

(7) 

The number of nodes within the sphere is chosen independently for each I and is taken 
equal to the number of nodes of the atomic functions that are expected to form the 
valence bands. If one is interested in excited states as well, one may include more than 
one principle quantum number n per 1-value [ 5 ] .  For the moment we will assume only 
one and suppress the n notationally. 

Unlike Takeda, we will now make a transformation from basis functions that have 
an angular dependence xi,' for their large component, to functions that have a large 
component with a pure spin character in the interstitial region as done before in APW 
[6]. This transformation is made for reasons that will become clear in the discussion of 
the spin-polarised versions in $43 and 4. Such a transformation is possible since g, and 
g-i-l are chosen to be equal in the interstitial region, which was a natural consequence 
of the potential approximation. The (unitary) transformation is [3] : 

For the interstitial region this means 
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where Yin' are the spherical harmonics and the asterisks (*) represent the rather compli- 
cated small components. The charge density contribution from the small components 
can be shown to be approximately a factor r 2 / 4  smaller than the contribution from 
the large component in this region. Inside the sphere the functions $J(lma) of course 
do not represent pure spin states even for the large component. However, in the 
non-relativistic limit we have gl  5 g-l-l and f i  N f-,-l 'v 0 inside the sphere and our 
wavefunctions, consisting then only of a large component, approach the ASW atomic 
functions with pure spin-up and spin-down character. 

The construction of the RASW basis functions as Bloch sums over the functions 
q5(/ma) and the evaluation of overlap and Hamiltonian matrix elements can be done 
by straightforward application of the methods presented in the original ASW paper by 
Williams et a1 [2], and will not be repeated here. 

3. The spin-polarised case: basic scheme 

For magnetic relativistic electron systems a consistent version of local four-current 
density functional theory (DFT) has been derived by Eschrig et a1 [7]. Since there are 
no explicit functionals for this theory available, it is usual practice to use a local spin 
moment DFT which is equivalent to the normal local spin DFT in the non-relativistic 
limit [7 ,  81. It can be found from the four-current DFT by omission of the orbital 
contribution to the four-current in a Gordon decomposition [9]. 

The Kohn-Sham-Dirac equations of such a DFT have an interaction term of the 
form [lo] : 

where we have defined the spin projection operators .(a) as 

1 + (sgno)a, n(a) = - 

The external magnetic field along the z axis, h2(r ) ,  is used in the first iteration only to 
break the symmetry. The energy functional for exchange and correlation, EXc[n ,  m,], is 
today probably best approximated by the relativistic expressions for exchange given by 
McDonald [11] and Xu et a1 [12] and the correlation parametrisation of Perdew and 
Zunger [13], using Monte Carlo results of Ceperley and Alder [14]. The polarisation 
ml(r) is to be evaluated from the eigenstates y,(v) of the previous iteration by the 
spherical average: 

As outlined in $2, the RASW functions qb(2ma) have pure spin character in the non- 
relativistic limit. Therefore, in this limit, it is obvious that the total effect of magnetism 
can be included in the basis functicns as follows: Because the projection operators n(6) 
are block diagonal in {$J( lmo)}  with respect to a in the non-relativistic limit, the term 
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H, can be included in the original Hamiltonian. The new basis functions $(ha) have 
the same analytical prescription in the interstitial region, but the numerical parts in the 
spheres are solutions of the radial equations with potentials V ( r )  + sgn(o)b(r). For this 
modification both parts of $(lmo), the functions and v ! ! - ~ ,  have to be evaluated in 
each potential and will be written gf(o) and Cj~!!-~(o), respectively. This procedure for 
the non-relativistic limit is equivalent to a spin-polarised ASW calculation. 

Now we will propose a similar method for the relativistic regime. The terms of 
the relativistic Hamiltonian that are not included in the non-relativistic procedure 
described above, will be taken into account using so called pseudo-perturbation theory. 
For this procedure i t  is essential that we made the transformation to basis functions 
with a large component of pure spin character in the interstitial region as defined in 
$2. 

In the relativistic regime the spin-orbit coupling removes the pure spin character 
of the basis functions $(lmo). Therefore the non-relativistic approach is not correct 
any more. However, it remains a good starting point since the basis functions will have 
almost pure spin character for their large component at least in the neighbourhood 
of the sphere boundaries and in the interstitial region. The term of the Hamiltonian 
H,, representing the coupling between spin-orbit interaction and spin polarisation, 
which we will call 8,, is not included in this non-relativistic approach and will now 
be included in the band matrix. This term is given by the difference between the 
polarisation terms (10) of the full Hamiltonian and the polarisation terms included in 
the Hamiltonian for the construction of the basis functions : 

f i m  = i [z(T) - n(1)I - [ ~ ( t )  - P (111 )b ( r )  

P(o)&lmo’) = d,,! $(lma). (15) 

(14) 

where the projection operators P ( o )  are defined by 

The matrix elements ($(lmo)l8,1$(l’m’o’)), needed to build the band matrix, can be 
evaluated using definition (15) for the operators P(a). For the terms with  IT), we use 
the definitions of $(lmo) and @,,“(o) from the appropriate modification of equations (8) 
and (l), the equalities 

(@:(oM(r)[4t) - n(l)ll@f(o’)) 

= J: dr(gf(o, r ) )  * b(r)i$ (a’, r )  (xf I o2 11:; )n 

with 
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and the orthonormality relations 

(x;ixil.:)n = 6KKJ8vv,.  (18) 
If this procedure is followed, we have a single formalism that has two exact limits: 

the non-magnetic relativistic limit and the magnetic non-relativistic limit. Between these 
limits, the coupling between spin-orbit interaction and spin polarisation is included 
in the band matrix. For this coupling our procedure is comparable to the pseudo- 
perturbation treatment of spin-orbit coupling in a scalar relativistic approach as 
suggested by Andersen [15] and Koelling and Harmon [16], but we have the advantage 
that we are working with an explicitly Hermitian variational problem. 

There are several other methods available today that are comparable with our basic 
scheme as far as their complexity and time consumption is concerned. First there are 
the scalar relativistic methods treating L .  S as a pseudo-perturbation but including spin 
polarisation in the basis functions [17]. Fritsche et al introduced a version of the linear 
rigorous cell (LRC) method that includes both spin-orbit coupling and spin polarisation 
as a pseudo-perturbation [18]. Ebert proposed an R i M T O  method including magnetic 
effects as a pseudo-perturbation including spin-orbit coupling in the basis functions 
[19]. These methods lack, however, either or both of the exact limits mentioned above. 

We believe the basic scheme of this section will be adequate in most cases. Since 
this scheme treats relativistic and magnetic effects on an equal footing it is a simple 
and efficient alternative to the more involved SPRLMTO method of Ebert et a1 [20] 
and to the multiple scattering approach (SPRKKR) of Strange et a1 [21]. (A similar 
approach was given in [22]. Non-self-consistent applications can be found in [23]. 
The tools for self-consistent calculations with this method were developed (but not yet 
applied) in [24].) The more elaborate scheme of the next section applies approximations 
comparable to those complex methods used by Ebert and Strange. 

4. Beyond the basic scheme 

We shall now show how the basic scheme of 43 can be systematically improved. If 
both relativistic and magnetic effects are equally important and if one is interested 
in the details of the spin as a function of the position inside the spheres (magnetic 
form factors), one may partially include the coupling between spin-orbit interaction 
and spin polarisation, H,,,, in the Hamiltonian used to construct the basis functions, 
in order to increase the variational freedom. The idea of such a calculation procedure 
was inspired by the ionic calculations of Cortona et a1 [lo]. 

The matrix elements of A, on {&lmo)} are seen, in 43, to be diagonal in 1 and 
p. This means A, couples (to order a*) the states ti = 1 and ti = -1 - I and K = 1 
and ti = 1 + 2. We will include the coupling between ti = 1 and K = -1 - 1 in the 
basis functions because, for sufficiently slowly varying magnetic field, this coupling is 
the more important, as shown from a Foldy-Wouthuysen transformation by Feder et 
a1 [25]. The analytic prescription of the basis functions remains unaltered. Also the 
definition of 4( lmo)  in equations (8) and the boundary conditions in equations (7) will 
not be changed. We return to the full Hamiltonian and substitute the definition of 
$(lma) in the Kohn-Sham-Dirac equation 
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The usual manipulations lead to the following set of radial equations (the K = 1 - 1 to 
ti = 1 + 1 coupling is neglected implicitly since we use 4 ( l m a ) ) :  

- 2 d ( l +  1/2)2 - p 2 )  +( 21+l  

where the relative coefficients y(1po) are given by 

~ ( l p o )  = -(sgno) 

The radial components g and f now depend on p as well as a. For each 1 the equations 
(20) have to be solved 41 + 2 times: for p = -1 - 1/2 to 1 + 1/2 for o =T and for 
p = - I  + 1/2 to I - 1/2 for o =J.. The equations for o =I can be found from those for 
a =T by making use of the operation z -+ -z with 1 -+ -l-  1 ; p -+ -p and b(r)  -+ -b(r). 

The radial equations proposed by Cortona et a1 are the equations (20) with 
~ ( l p o )  = 1, since they hold for solutions that are the trivial linear combination of yf 
and w ! / - ~ .  Cortona et a1 show how to solve their equations and find for all (1 ,p)  both 
a symmetric and an anti-symmetric solution. For core electrons this method can be 
applied unchanged. But since the valence electron states $( /ma)  are linear combinations 
of I$ and 1+9!!-~ with definite symmetry, the equations (20) will have only one solution 
for each spin direction. 

Finally we include the remainder coupling fi, between spin-orbit interaction and 
spin polarisation by analogy with the basic scheme into the band matrix. These terms 
are given by 

while the orbital projection operators p(1) are defined as 
- 5 

P ( l )  ; (1”) = 6//, $ (lmo). (23) 
- 

The functions $ (ha) are the new basis functions with radial parts obeying equations 
(20). 



8376 B C H Krutzen and F Springelkainp 

This procedure represents a pseudo-perturbation approach with more variational 
freedom than the basic scheme of $3. The two exact limits of the basic scheme are 
exact for this procedure also. In practice this scheme represents the limit (because 
the number of coupled radial equations grows enormously if the above scheme has to 
be improved) of the local moment density approximation within the RASW formalism, 
as far as relativistic and (collinear) magnetic effects are concerned. (In our approach 
there remains the problem of non-collinear magnetism. Recently an Asw-based method 
for different (but constant) magnetisation directions in different atomic spheres was 
presented in [26]. See also [27].) The price to be paid for the accuracy of this 
improved scheme is the numerical solution of a large number (for all p) of four 
coupled radial equations. The SPRLMTO method mentioned above, can be considered 
almost equivalent to this improved scheme apart from the fact that the former method 
does not include the A/  = 2 coupling. 

In fact, we expect that the accuracy obtained by the basic scheme of $3 will be 
sufficient in most cases. Such a basic scheme can only be applied in a linear method 
like RAW. If non-linearised methods are used, one can only apply more elaborate 
schemes as presented in this section. Even then, it seems not practicable to take care 

of the terms H,. 
- 

5. Calculations with the basic scheme 

The basic scheme of $3 has been implemented and tested extensively on non-magnetic 
crystals such as the noble metals, PbTe and AuTe,-this work will be reported else- 
where. In this section we present results for ferromagnetic nickel and gadolinium. The 
lattice constants used are a = 6.550 au for FCC nickel and a = 6.858 au, c = 10.952 au 
for HCP gadolinium. The Wigner-Seitz radii are (atomic sphere approximation) chosen 
to be R,, = 2.560 and R,, = 3.764 au. In both cases the magnetisation direction was 
taken parallel to the c axis and corrections for interstitial charge were accounted for 
in the standard way, through the calculation of the energy derivative of the structure 
constants. Several different exchange and correlation functionals were used. 

Hedin-Lundquist, con Barth-Hedin (xc1) 
In the expressions found in von Barth and Hedin’s paper [28] for the interpolation 
between the ferromagnetic and paramagnetic electron gas, we take the original values 
of Hedin and Lundqvist [29] for the parameters of the paramagnetic gas (c, = 0.045 
and rp = 21.0 au) and find the ferromagnetic values by the application of the scaling 
laws of the random phase approximation [28] : cF = i c p  and rF = 24’3 r,. 

Gunnarsson-Lundquist (xc2) 
Gunnarsson and Lundqvist found the following set of parameters for the same in- 
terpolation formula [31]: cp = 0.0666, r ,  = 11.4 au and cF = 0.0406, rF = 15.9 
au. 

Perdew-Zunger, Ceperley-Alder ( x c ~ )  
Perdew and Zunger [13] fitted their formulae to Monte Carlo results of Ceperley and 
Alder [14]. 
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Perdew-Zunger, Ceperley-Alder, McDonald-Xu (XC4) 

Parametrisation ~ c 3  is modified with relativistic corrections to the exchange part given 
by McDonald [l 11 and Xu [12]. 

5.1. Results f o r  nickel 

For nickel the ground state expectation values of ( J , )  = (Lz  + i g z )  and (3,) are given 
in table 1, as well as orbital and spin contributions to the magnetic moment and the 
inferred value for the g-factor: 

g = (Ptotal/Pspin)ge 

where g ,  (E 2.0023) is the electronic gyromagnetic ratio. In the table we have included 
the contributions with different 1-values for both wavefunctions of the inner product 
of equation (13), in the row with the lowest 1-value. Therefore wi5 used the E sign to 
indicate the 1-value. 

Table 1. Occupation numbers and magnetic moments jl (in units of j lg) foi ferromagnetic 
FCC nickel with the magnetisation direction parallel to a fourfold rotation axis. 

Calculations Experiment 

Reference This work [301 ~ 9 1  ~ 9 1  ~1 [321 M I  
Method SPKASW SPRASW SPRKKR SPKLMTO RLMTO LRC LMTO 
xc xc4 xc I xc I XCI xc I xc2 xc2 
No k-vectors 1997 1997 1575 505 
Self-consistent yes yes no no no yes yes 

-0.004 
-0.02 1 

0.603 
-0.001 

-0.002 
--0.0 10 

0.345 
-0.001 

0.578 
0.043 
0.620 
2.15 

-0.004 
-0.021 

0.621 
-0.00 1 

-0.002 
-0.010 

0.355 
-0.001 

0.596 
0.042 
0.639 
2.15 

-0.002 
-0.022 

0.622 

-0.001 
-0.01 1 

0.357 

0.598 
0.046 
0.644 
2.16 

-0.005 
-0.027 

0.604 

-0.003 
-0.013 

0.350 

0.572 
0.049 
0.621 
2.17 

-0.006 
-0.027 

0.60 1 

-0.003 
-0.013 

0.348 

0.568 0.52 0.60 0.57 
0.048 0.045 0.050 
0.616 0.565 0.60 0.62 
2.17 2.18 2 2.18 

Also included in table 1 are the results of Jarlborg and Peter [32] with the 
non-relativistic LMTO method [38], the results of Fritsche, Noffke and Eckhardt [18] 
obtained from the LRC method including scalar-relativistic corrections in the basis 
functions and spin-orbit coupling as well as spin polarisation in pseudo-perturbation 
and the results of Ebert, Strange and Gyorffy [30] using a spin-polarised relativistic 
multiple scattering method (SPRKKR) which is non-linear and treats all interactions 
exact (within the limitations of the KKR framework, of course) except for the AI = 2 
coupling that is omitted entirely. However, the results of the latter method are not 
self-consistent, but make use of the non-relativistic self-consistent potentials of Moruzzi 
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et a/ [33]. Furthermore table 1 contains SPRLMTO and RLMTO (see $04 and 3) results 
from another paper of Ebert [19] based on the same non-relativistic potential. The 
experimental values are taken from [34]. 

From a test of the accuracy of the numerical Brillouin zone integration we deduce 
that our values for the moments are converged to within a few thousands of pB. The 
agreement with experiment especially for the xC4 exchange and correlation is satisfying. 
It can be concluded that the differences between the calculated values are small, as 
they should be for a system with a relatively light atom such as Ni and that the overall 
agreement with experiment is very good. 

Figure 1. The Brillouin zone for FCC Ni with the magnetisation parallel to [OOl]. The 
irreducible wedge is marked by the broken lines. 

Figure 2. The energy bands for FCC Ni with the magnetisation parallel to [OOl], following the 
symmetry lines of figure 1 along (units 2rr/a): (a) r(o,o,o)-x(i,o,oj-w(i,o, t j -L( i ,  4, f ) -  
T-K(:, :,O)-X(l, 1,Oj; ( b )  X(O,O, l)-r-X(l,O$O). Both have the Fermi level at E = 0. 
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Figure 2 shows the energy bands of Ni along the symmetry directions of the 
Brillouin zone indicated in figure 1. The anisotropy of the bands along r-X[001] and 
T-X[ 1001, which are equivalent in a non-relativistic calculation, is stressed in figure 
2(b) .  These bands are in good agreement with those of Ebert [I91 and Ebert et a1 
[20]. The total density of states (DOS, figure 3) was calculated with the linear analytic 
tetrahedron method for 9216 simplices in the irreducible wedge and a resolution of 
0.02 eV. 

-0 -6 -4 - 2  0 2 
Energy ( e V )  

Figure 3. The total DOS for FCC Ni with the magnetisation parallel to [OOl]. The broken 
line indicates the Fermi level. 

5.2. Results f o r  gadolinium 

Gadolinium is the heaviest elemental ferromagnet. It contains seven unpaired 4f 
electrons. After some initial doubts [35] it is now accepted that Gd can be treated in a 
band calculation (including the f electrons) giving reasonable ground state properties 
even in local spin density [17]. The results of the basic scheme for Gd, results of 
Sticht and Kiibler [17] and experimental values for the different contributions to the 
magnetisation are collected in table 2. The SPRASW magnetisations are converged to 
within 0 . 0 1 ~ ~ .  The radial mesh contained 2500 points to get a secular problem which 
is Hermitian with an accuracy of lo-’ Hartree. 

For the same exchange and correlation functional xc2 we find almost the same 
ptota, as Sticht and Kiibler. Their results were found with a scalar relativistic ASW 
program including L .  S coupling as a pseudo-perturbation in the band matrix, within 
the self-consistent cycle (without adjustable parameters). The SPRASW calculations with 
xc3 and xc4 show that the total moment is quite sensitive to the explicit form of the 
xc functional. Therefore the suggested accuracy from a comparison of xc2 results with 
the Roeland experiment [37] only, should be considered too optimistic. The g-factor 
calculated by Sticht and Kiibler [17] is 2.068 and deviates appreciably from the value 
2 expected in an atomic picture for a half-filled f shell. The only measured value we 
are aware of, g = 2.00 0.02, seems to have been performed on a less pure sample 
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Table 2. Occupation numbers and magnetic moments p (in units of p ~ g )  for ferromagnetic 
HCP gadolinium with the magnetisation direction parallel to a threefold rotation axis. 

Calculations Experiment 

Reference This work ~ 7 1  [371 [361 

Method SPRASW SPRASW SPRASW SPRASW ASW 
xc x c 4  xc3 xc I xc2 xcz 
No k-vectors 233 233 233 233 
Self-consistent yes yes yes Yes Yes 

(0:) 

}0.16 1 2 0  0.021 0.022 0.027 0.026 
1 -  1 0.128 0.137 0.167 0.158 
1 2 2  0.416 0.437 0.537 0.513 0.47 
1 2 3  6.762 6.784 6.814 6.789 6.76 

( J : )  

} 0.07 1 2 0  0.008 0,008 0.011 0.010 
1 2 1  0.060 0.065 0.079 0.074 
1 5 2  0.176 0.185 0.229 0.218 0.20 
1 - 3  3.598 3.572 3.555 3.584 3.59 

Pspm 7.34 7.39 7.55 7.50 7.39 

g 2.047 2.036 2.025 2.036 2.068 2.00 0.02 

h b i r d l  0.163 0.123 0.084 0.127 0.25 
/'total 7.50 7.51 7.64 7.62 7.64 7.63 + 0.01 7.50 

than the ones available today (ptotal = 7 . 5 0 , ~ ~  [36] while a more recent experiment [37] 
gives ptotal = 7.63 O.OlpBj. The deviation of g from 2 is almost twice as small in our 
calculation. It seems as if the quenching of orbital momentum in our calculation is 
more effective and it could be supposed to result from the larger variational freedom 
included in our method. The results of the calculation with xC1 are almost in agreement 
with the measured 2.00 i 0.02 for g .  As can be seen from the table, the relativistic 
corrections to the exchange part of McDonald and Xu decrease the spin moment in 
favour of the orbital moment, while the total moment changes only slightly. 

Figure 4. The Brillouin zone for HCP Gd with the magnetisdtion parallel to [OOl]. The 
irreducible wedge is marked by the broken lines. 

Finally we tried to get an idea about the importance of the AI = 2 coupling. For 
this purpose the calculation with x c 4  was repeated with the change that in the second 
part of fi, in equation (14) the AI = 2 terms were omitted. The result is that the orbital 
moment remains almost unchanged, while the spin moment decreases by 2 x pB. 
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Figure 5. The energy bands for HCP Gd with the magnetisation parallel to [OOl], following 
the symmetry lines of figure 4. The broken line indicates the Fermi level. 

It can be concluded that the AI = 2 coupling can safely be omitted for the calculation 
of the occupation numbers studied in the materials under consideration. 

The Gd energy bands along symmetry directions (figure 4) are shown in figure 5 
and the total DOS in figure 6, calculated with 2048 simplices in the irreducible part of 
the Brillouin zone with a resolution of 0.02 eV. 

The value for the DOS at the Fermi level is N ( E , )  = 2.7 (eV atom)-' which is about 
20% lower than the ASW result of Sticht and Kubler. This is still too high to make the 
free electron contribution to the specific heat y coincide with the experimental y ,  which 
cannot be considered surprising for an excited state property of a system containing 
f electrons. The bandwidth of 0.7 eV is in agreement both with experiment and the 
ASW result [39, 171, but the 4f binding energy inferred from the DOS is too small with 
respect to the experimental value which is also not surprising. 

6. Conclusion 

We introduced LSD methods based on RASW for magnetic systems. The first ($3) is as 
simple as a first-principles LSD method including all relativistic and spin polarisation 
effects can be. It has two exact limits, the non-relativistic magnetic and the relativistic 
non-magnetic limit, and treats relativistic and magnetic effects on equal footing. The 
second, ($4) improved scheme is more involved, especially as far as the solution of the 
radial Kohn-Sham-Dirac equations is concerned. It represents, in practice, the limit 
of the local moment DFT in an ASW framework as far as relativistic and magnetic 
interactions are concerned. 
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Figure 6. The total DOS for HCP Gd with the magnetisation parallel to [OOl]. The broken 
line indicates the Fermi level. 

The first, basic scheme was applied to ferromagnetic Ni and Gd. For both materials 
these calculations yield the first self-consistent results based on the solution of radial 
Kohn-Sham-Dirac equations. The calculated ground state properties of nickel agree 
very well with experiment and the differences between the results obtained by our and 
other, different methods are small. The gadolinium case is much more complicated, 
because of the seven 4f electrons. However, we find good agreement with experiment 
for the ground state occupation numbers. The spectroscopic splitting factor g is 
significantly smaller in our calculation than in an ASW calculation, where it comes 
out too large, compared to the only experimental value known (to us). In order to 
judge the merits of the basic scheme, more and better experimental determinations of 
g would be very welcome. Also further calculations (for example on ferromagnetic 
actinide compounds) would be instructive, not least because they provide possibilities 
to explore the limits of local spin moment DFT for ground state properties of systems 
with localised electrons. 
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